首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11521篇
  免费   2000篇
  国内免费   1289篇
化学   5220篇
晶体学   74篇
力学   2176篇
综合类   62篇
数学   1428篇
物理学   5850篇
  2024年   22篇
  2023年   156篇
  2022年   293篇
  2021年   469篇
  2020年   531篇
  2019年   502篇
  2018年   389篇
  2017年   423篇
  2016年   612篇
  2015年   505篇
  2014年   656篇
  2013年   1152篇
  2012年   688篇
  2011年   728篇
  2010年   640篇
  2009年   770篇
  2008年   795篇
  2007年   810篇
  2006年   708篇
  2005年   547篇
  2004年   414篇
  2003年   395篇
  2002年   367篇
  2001年   304篇
  2000年   274篇
  1999年   235篇
  1998年   226篇
  1997年   156篇
  1996年   142篇
  1995年   132篇
  1994年   140篇
  1993年   103篇
  1992年   77篇
  1991年   66篇
  1990年   54篇
  1989年   48篇
  1988年   39篇
  1987年   43篇
  1986年   26篇
  1985年   29篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   8篇
  1980年   6篇
  1979年   14篇
  1978年   9篇
  1976年   9篇
  1971年   6篇
  1957年   11篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
61.
Chen Sun  Wei Zhao  Huanhuan Zhang 《Molecular physics》2019,117(23-24):3957-3967
Structures of ionic liquids (ILs) 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide ([C10mim][TFSA]) and 1-decyl-dimethylimidazolium bis(trifluoromethanesulfonyl)azanide ([C10(mim)2](TFSA)2) in different-sized mica slits have been investigated using molecular dynamics simulations. Ion density and angular distributions for monocationic IL [C10mim][TFSA] were analysed to elucidate the IL structures under different surface charges and especially their changes in the direction perpendicular to the surfaces. [C10mim][TFSA] formes in bilayers, compatible with existing models of ILs with long alkyl chains. For dicationic IL [C10(mim)2](TFSA)2, cations adjacent to the mica surface tend to stay parallel to the surface with both positively charged rings absorbed. While near the centre of the slit, dications show the weak tendency of orientation distribution, more random than [C10mim]+ ions. Structures of [C10(mim)2](TFSA)2 cannot be described by bilayer models. Additionally, the in-plane arrangement of [C10mim][TFSA] is more ordered when K+ ions completely neutralise the negative charge of the mica surface, and [C10mim]+ ions tend to be located in hexagonal mica lattices with two aluminium atoms in replacement of silicon atoms. [TFSA]? ions are constrained by the neighbouring K+ ions absorbed onto mica lattices.  相似文献   
62.
张珑慧  由长福 《计算物理》2019,36(3):291-297
为提高计算效率,提出有限体积法离散下的虚拟区域颗粒两相流动直接模拟方法.在控制方程中加入相应的虚拟区域源项,保证了颗粒内部的刚体运动特性.该源项中含有颗粒信息部分及流体信息部分.在每次迭代后,对源项中的流体信息部分进行更新,从而更好地保证颗粒内速度的刚体分布.计算静止颗粒圆柱绕流及单个颗粒的沉降过程,验证了算法的准确性.  相似文献   
63.
Anisotropic fluids (e.g. liquid crystals) offer a remarkable promise as optofluidic materials owing to the directional, tunable, and coupled interactions between the material, flow, and the optical fields. Here we present a comprehensive in silico treatment of this anisotropic interaction by performing nonequilibrium molecular dynamics simulations. We quantify the response of a nematic liquid crystal (NLC) undergoing a Poiseuille flow in the Stokes regime, while being illuminated by a laser beam incident perpendicular to the flow direction. We adopt a minimalistic model to capture the interactions, accounting for two features: first, the laser heats up the NLC locally; and second, the laser polarises the NLC and exerts an optical torque that tends to reorient molecules of the nematic phase. Because of this reorientation the liquid crystal exhibits small regions of biaxiality, where the nematic director is one symmetry axis and the axis of rotation for the reorientation of the molecules is the other one. We find that the relative strength of the viscous and the optical torques mediates the flow-induced response of the biaxial regions, thereby tuning the emergence, shape and location of the regions of enhanced biaxiality. The mechanistic framework presented here promises experimentally tractable routes toward novel optofluidic applications based on material-flow-light interactions.  相似文献   
64.
65.
A model is proposed to understand the dynamics in a food chain (one predator‐two prey). Unlike many approaches, we consider mutualism (for defense against predators) between the two groups of prey. We investigate the conditions for coexistence and exclusion. Unlike Elettreby's (2009) results, we show that prey can coexist in the absence of predators (as expected since there is no competition between prey). We also show the existence of Hopf bifurcation and limit cycle in the model, and numerically present bifurcation diagrams in terms of mutualism and harvesting. When the harvest is practiced for profit making, we provide the threshold effort value that determines the profitability of the harvest. We show that there is zero profit when the constant effort is applied. Below (resp. above) , there will always be gain (resp. loss). In the case of gain, we provide the optimal effort and optimal steady states that produce maximum profit and ensure coexistence. Recommendations for resource managers As a result of our investigation, we bring the following to the attention of management:
  • 1. In the absence of predators, different groups of prey can coexist if they mutually help each other (no competition among them).
  • 2. There is a maximal effort to invest in order to gain profit from the harvest. Above , the investment will result in a loss.
  • 3. In the case of profit from harvest, policy makers should recommend the optimal effort to be applied and the optimal stock to harvest. This will guarantee maximum profit while ensuring sustainability of all species.
  相似文献   
66.
《Physics letters. A》2019,383(19):2290-2295
Cooling rate is critical in synthesizing nanoparticles (NPs), which determines the microstructure and the corresponding mechanical, thermal and electrical properties. This research, as the most initiative one, studies microstructure formation of three different sized high entropy alloy (HEA) NPs under three different cooling rates, employing molecular dynamics (MD). Through analysis of potential energy, “common neighbor analysis”, radial distribution function, and also the mean square displacement, it is found that phase transition temperature is independent of HEA NP size, and as cooling rate decrease, more amorphous atoms transform to fcc and hcp orders, which can alternate the mechanical and thermodynamic properties of the final structure. The Cr atoms are found to aggregate into one cluster inside the NP and also try to migrate to the surface of the HEA NP, due to the large diffusivity. This research provides new insights in the size dependency of the nanoparticles, which may motivate more applications in which the strong size dependency is not desirable.  相似文献   
67.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
68.
Owing to marked advances in instrumentation in X-ray and neutron scattering the time-dependent pair correlation function, the Van Hove function, can now be determined by inelastic X-ray and neutron scattering measurements. The local dynamics of water in real space and time is visualised by this approach. We discuss how the dynamic properties, such as viscosity and diffusion, can be elucidated through the Van Hove function of water.  相似文献   
69.
Nanoparticles have an immense importance in various fields, such as medicine, catalysis, and various technological applications. Nanoparticles exhibit a significant depression in melting point as their size goes below ≈10 nm. However, nanoparticles are frequently used in high temperature applications such as catalysis where temperatures often exceed several 100 degrees which makes it interesting to study not only the melting temperature depression, but also how the melting progresses through the particle. Using high‐resolution transmission electron microscopy, the melting process of gold nanoparticles in the size range of 2–20 nm Au nanoparticles combined with molecular dynamics studies is investigated. A linear dependence of the melting temperature on the inverse particle size is confirmed; electron microscopy imaging reveals that the particles start melting at the surface and the liquid shell formed then rapidly expands to the particle core.  相似文献   
70.
《中国物理 B》2021,30(6):66301-066301
Dynamics of hydrogen doped Cu_(50) Zr_(50) glass-forming liquids are investigated by using the newly developed modified embedded atomic method(MEAM) potential based on molecular dynamics simulations. We find that the doping of hydrogen atoms slows down the relaxation dynamics, reduces the fragility of supercooled melts, and promotes the occurrence of glass transitions. The dynamic slowdown is suggested to be closely related to the effect of hydrogen atoms on locally ordered structure of melts. With increasing concentration of hydrogen, the five-fold symmetry associated with Cu-and Zr-centered polyhedrons is lowered, on the other hand, the local order featuring metal hydrides is enhanced. The latter dominates the dynamic behaviors of glass-forming liquids, especially for Zr atoms, and results in the dynamic slowdown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号